Kümeler
 
KÜMELER
 

TANIM

Küme, nesnelerin iyi tanımlanmış listesidir.Kümeler genellikle A, B, C gibi büyük harflerle gösterilir.

Kümeyi oluşturan ögelere, kümenin elemanı denir. a elemanı A kümesine ait ise,
a
A biçiminde yazılır. "a, A kümesinin elemanıdır." diye okunur. b elemanı A kümesine ait değilse, b A biçiminde yazılır. "b, A kümesinin elemanı değildir." diye okunur.

Kümede, aynı eleman bir kez yazılır.

Elemanların yerlerinin değiştirilmesi kümeyi değiştirmez.

A kümesinin eleman sayısı s(A) ya da n(A) ile gösterilir.

 

B. KÜMELERİN GÖSTERİLİŞİ

Kümenin elemanları aşağıdaki 3 yolla gösterilebilir.

1. Liste Yöntemi

Kümenin elemanları { } sembolü içine, her bir elemanın arasına virgül konularak yazılır.

2. Ortak Özellik Yöntemi

Kümenin elemanları, daha somut ya da daha kolay algılanır biçimde gerektiğinde sözel, gerektiğinde matematiksel bir ifade olarak ortaya koyma biçimidir.

A = {x : (x in özelliği)}

Burada "x :" ifadesi “öyle x lerden oluşur ki” diye okunur.

Bu ifade "x |" biçiminde de yazılabilir.

3. Venn Şeması Yöntemi

Küme, kapalı bir eğri içinde her eleman bir nokta ile

gösterilip noktanın yanına elemanın adı yazılarak

gösterilir.

Bu gösterime Venn Şeması ile gösterim denir.

 


Aynı elemanlardan oluşan kümelere eşit kümeler denir. Eleman sayıları eşit olan kümelere denk kümeler denir.

A kümesi B kümesine eşit ise A = B,

C kümesi D kümesine denk ise

biçiminde gösterilir.

 

Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.

 

D. BOŞ KÜME

Hiç bir elemanı olmayan kümeye boş küme denir.

Boş küme { } ya da sembolleri ile gösterilir.

Eşit olan kümeler ayın zamanda denktir. Fakat denk kümeler eşit olmayabilir.

{.} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.

 

{} ve {0} kümeleri boş küme olmayıp birer elemana sahip iki denk kümedir.

 

E. ALT KÜME - ÖZALT KÜME

1. Alt Küme

2. Özalt Küme

Bir kümenin, kendisinden farklı bütün alt kümelerine o kümenin özalt kümeleri denir.

3. Alt Kümenin Özellikleri

  

 

F. KÜMELERLE YAPILAN İŞLEMLER

1. Kümelerin Birleşimi

A nın elemanlarından veya B nin elemanlarından oluşan kümeye bu iki kümenin birleşim kümesi denir

 

2. Birleşim Işleminin Özellikleri

  

 

4. Kesişim Işleminin Özellikleri

 

 

G. EVRENSEL KÜME

Üzerinde işlem yapılan, bütün kümeleri kapsayan kümeye, evrensel küme denir. Evrensel küme genellikle E ile gösterilir.

 

H. BİR KÜMENİN TÜMLEYENİ

Evrensel kümenin elemanı olup, A kümesinin elemanı olmayan elemanlardan oluşan kümeye A nın tümleyeni denir ve A ya da A' ile gösterilir.

I. KUVVET KÜMESI

Bir kümenin bütün alt kümelerin kümesine kuvvet kümesi denir. Kuvvet kümesi P(A) ile gösterilir.

 

J. İKİ KÜMENİN FARKI

A kümesinde olup, B kümesinde olmayan elemanların kümesine A fark B kümesi denir. A fark B kümesi A – B ya da A B biçiminde gösterilir.

 

Farkla Ilgili Özellikler

A, B, C kümeleri E evrensel kümesinin alt kümeleri olmak üzere,

Tenis veya voleybol oynayanların sayısı:

C. EŞİT KÜME, DENK KÜME

 
 
   
 
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol